Investigation into Itadori Knotweed as a Control of Bank Erosion in New Hampshire Rivers

Lauren Kaehler MS Hydrology Candidate

ns nyurology Calluluate

Advisor: Anne Lightbody

Why is studying erosion important?

- Erosion is a natural process which drives geomorphic change in river systems
- Erosion can damage infrastructure
- Excessive erosion can harm ecosystems by increasing sediment load

www.cbsnews.com

https://conservationdistrict.org

How does erosion happen?

- Mechanisms of bank erosion
 - Fluvial entrainment
 - Mass failure
 - Subaerial processes

When does fluvial entrainment happen?

When applied shear stress exceeds critical shear stress:

$$\mathsf{E} = k(\tau_{\mathsf{a}} - \tau_{\mathsf{c}})$$

- E = Lateral erosion rate
- *k* = Erodibility coefficient
- τ_a = Applied shear stress
- τ_c = Critical shear stress

How does vegetation influence bank erosion?

- Vegetation can stabilize riverbanks
- *Reynoutria japonica* (Itadori Knotweed) is suspected to promote erosion of riverbanks

What is Itadori knotweed?

- A highly invasive plant which has spread throughout the Europe and North America from Asia
- It has a rhizomatic root structure
- It dies back in winter exposing soil to erosion

⁽Colleran et al., 2020)

Hypothesis

Higher amounts of erosion occur near knotweed patches than vegetation patches of native species

Fluvial entrainment, caused by applied shear stress exceeding critical shear stress, is a dominant cause of bank erosion around knotweed patches

Study Rivers

	Sugar River	Lamprey River		
Watershed Area				
(km2)	553	715		
Channel Slope				
(%)	12.35	6.24		
Precipitation				
(cm)	167.60	114.3		
	Gravel/Cobble/			
Bed Material	Boulder	Sand/Gravel		
Gauge Station	USGS 01152500	USGS 01073500		

Hydrographs

Sugar River

Lamprey River

Explanation - Percentile classes							
lowest- 10th percentile	5	10-24	25-75	76-90	95	90th percentile -highest	Flow
Much below Normal		Below normal	Normal	Above normal	Much above normal		1 ISH

Canoeing the Study Rivers

Knotweed Patches Along the Sugar River

50 patches were identified along 21 km of the river

Knotweed was focused around urban areas of Claremont and Newport, NH

Knotweed Patches Along the Lamprey River

Study Sites

Methods and Results

- Vegetation Survey (Focal Sites)
- Soil Property Testing (Focal Sites)
 - Critical Shear Stress
- Erosion Monitoring
 - Bank Pins (All Sites)
- Hydraulic Modelling (Focal Sites)
 - Applied Shear Stress

Methods and Results

• Vegetation Survey (Focal Sites)

- Soil Property Testing (Focal Sites)
 - Critical Shear Stress
- Erosion Monitoring
 - Bank Pins (All Sites)
- Hydraulic Modelling (Focal Sites)
 - Applied Shear Stress

Sugar Site 6 Native Patch

Sugar Site 6 Knotweed Patch

	Sugar Site 2		Sugar Site 6		Lamprey Site	
Quadrats	Species	Stem Count	Species	Stem Count	Species	Stem Count
Native 1	Boehmeria cylindrica	1	Athyrium filix-femina	4	Cornus amomum	73
	Celastrus scandens	1	Boehmeria cylindrica	18	Solidago flexicaulis	2
	Solidago flexicaulis	45	Solidago flexicaulis	23		
	Athyrium filix-femina	7	Boehmeria cylindrica	10	Cornus amomum	57
Native 2	Boehmeria cylindrica	1	Fraxinus nigra	1	Solidago flexicaulis	1
Native Z	Robinia pseudoacacia	1				
	Solidago flexicaulis	9				
	Ambrosia artemisiifolia	1	Boehmeria cylindrica	35	Boehmeria cylindrica	1
Native 3	Boehmeria cylindrica	14	Solidago flexicaulis	7	Cornus amomum	69
	Solidago flexicaulis	10			Solidago flexicaulis	4
	Reynoutria japonica	13	Reynoutria japonica	13	Reynoutria japonica	18
Knotweed 1	Solidago flexicaulis	1				
Knotweed 2	Reynoutria japonica	11	Reynoutria japonica	15	Reynoutria japonica	7
Knotweed 3	Reynoutria japonica	12	Reynoutria japonica	8	Reynoutria japonica	10

Main Takeaway:

Vegetation type and density is similar between native vegetation patches and knotweed patches, respectively

Methods and Results

- Vegetation Survey (Focal Sites)
- Soil Property Testing (Focal Sites)
 - Critical Shear Stress
- Erosion Monitoring
 - Bank Pins (All Sites)
- Hydraulic Modelling (Focal Sites)
 - Applied Shear Stress

- 1. Weigh (Wet Weight)
- 2. Dry Soil in Oven at 105°C for 24 hours
- 3. Weigh (Dry Weight)
- 4. Wet Sieve
- 5. Dry remaining soil in oven at 105°C for 24 hours
- 6. Weigh (Dry Sand Weight)

Calculated:

- Bulk Density (Dry Weight/Volume)
- Soil Moisture ((Wet Weight Dry Weight)/Dry Weight)
- % Silt-Clay ((Dry Weight Dry Sand Weight)/Dry Weight)

Estimating Critical Shear Stress (τ_c):

$\tau_{c} = 0.1 + 0.1779(SC\%) + 0.0028(SC\%)^{2} - 2.34e^{-5}(SC\%)^{3}$

(Julien and Torres, 2005)

Site Name	Silt and Clay %	Bulk Density (g/cm³)	Soil Moisture Content (%)	Estimated Critical Shear Stress (N/m ²)
Sugar Site 2 Native	24%	0.35	24%	5.85
Sugar Site 2 Knotweed	26%	0.35	24%	6.71
Sugar Site 6 Native	32%	0.39	24%	8.57
Sugar Site 6 Knotweed	59%	0.32	19%	20.25
Lamprey Native	35%	0.28	57%	9.69
Lamprey Knotweed	22%	0.49	27%	5.52

Main Takeaway:

Soil Properties, including critical shear stress, are similar between paired vegetation patches apart from the Sugar Site 6 knotweed patch

Methods and Results

- Vegetation Survey (Focal Sites)
- Soil Property Testing (Focal Sites)
 - Critical Shear Stress
- Erosion Monitoring
 - Bank Pins (All Sites)
- Hydraulic Modelling (Focal Sites)
 - Applied Shear Stress

15 cm - 5 cm = 10 cm of erosion

Sugar Site 6 Native Patch

More erosion was recorded at knotweed patches than native patches

There was no difference in erosion between upstream and downstream pins or between top, middle, and bottom pins

No correlation was found between the amount of erosion and estimated critical shear stress at the focal sites

Main Takeaway:

Banks with knotweed experienced more erosion on average than banks with native vegetation

Methods and Results

- Vegetation Survey (Focal Sites)
- Soil Property Testing (Focal Sites)
 - Critical Shear Stress
- Erosion Monitoring
 - Bank Pins (All Sites)
 - Structure from Motion (Focal Sites)
- Hydraulic Modelling (Focal Sites)
 - Applied Shear Stress

Hydraulic Modeling

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data
- Discharge
- Downstream stage

Outputs:

• Applied streamwise shear stress

Hydraulic Modeling

Inputs:

• Digital Elevation Model (DEM)

- Topographic data
- Bathymetric data
- Combine data
- Discharge
- Downstream stage

Outputs:

• Applied streamwise shear stress

DEM: Topographic Data

Site	Flight Date	Area Covered (km²)	Number of Photographs	Number of Points in Point Cloud	Point Density (points per m ³)
Sugar Site 2	4/2/2022	0.346	958	8805925	22.3
Sugar Site 2	9/16/2022	0.458	5670	65761585	20.54
Sugar Site 6	4/2/2022	0.16	382	3841163	22.3
Sugar Site 6	9/16/2022	0.397	2500	7765957	7.14
Lamprey Site	5/5/2022	0.752	1129	29801064	20.1
Lamprey Site	9/16/2022	1.1	3252	33373673	20.42

Hydraulic Modeling

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data
- Discharge
- Downstream stage

Outputs:

• Applied streamwise shear stress

DEM: Bathymetric Data

- Generally, points were surveyed in cross sections
- More points were surveyed in bathymetrically complex regions

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data
- Discharge
- Downstream stage

Outputs:

DEM: Combing Data

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data

• Discharge

• Downstream stage

Outputs:

Discharge

	Upstream Watershed Area (km2)	Low Discharge (cms)	Medium Discharge (cms)	High Discharge (cms)
Sugar Gauge Station	713.98	5.15	110.32	272.72
Lamprey Gauge Station	553.48	4.14	35.84	251.16
Sugar Site 2	624.39	4.51	96.48	238.50
Sugar Site 6	652.52	4.71	100.82	249.24
Lamprey Site	283.50	2.12	18.36	128.65

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data
- Discharge
- Downstream stage

Outputs:

Downstream Stage

Manning's equation:

$$Q = VA = \left(\frac{1}{n}\right) R^{2/3} S^{1/2}$$

Q = discharge (m3/s)

(m2)

V = flow velocity (m/s)

A = cross-sectional area of the channel

n = Manning's roughness coefficientR = hydraulic radius (m)S (m/m) = channel slope

Downstream Stage

Weir equation:

 $Q = CLH^{3/2}$

 $Q = discharge (m^3/s)$ L = length of the weir (m) $C = is the discharge coefficient (m^{0.5}s^{-1})$ H = height of the water (m)

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data
- Discharge
- Downstream stage

Outputs:

- Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH)
 - Developed by the United States Geologic Survey (USGS)
 - Offered by International River Interface Cooperative (iRIC)
 - Two-dimensional model which uses the continuity and Navier-Stokes equations for the conservation of fluid mass and momentum
 - Solves for velocity and shear stress along an orthogonal curvilinear grid

- Grid width
 - 200 m for Sugar Site 2
 - 100 m for Sugar Site 6 and the Lamprey Site
- Grid size
 - 1-meter square grids for the Sugar Site 2
 - 0.5-meter square grids for Sugar Site 6 and the Lamprey Site

Sugar Site 2

Inputs:

- Digital Elevation Model (DEM)
 - Topographic data
 - Bathymetric data
 - Combine data
- Discharge
- Downstream stage

Outputs:

Sugar Site 2

Applied shear stress in the streamwise direction

Time: Osec

There was no correlation between applied shear stress and erosion

Main Takeaway:

Paired vegetation patches experienced similar amounts of applied shear stress

Combining Erosion Monitoring and Hydraulic Sugar Site 2 Modeling Results Sugar Site 6

Combining Erosion Monitoring and Hydraulic Modeling Results

Main Takeaway:

Fluvial entrainment is not the dominant mechanism of bank erosion taking place at the study sites

Limitations

- Small number of study sites and short study period
- Focus on fluvial entrainment instead of all erosional processes
- Potential inaccuracies

Limitations

- Small number of study sites and short study period
- Focus on fluvial entrainment instead of all erosional processes
- Potential inaccuracies

Limitations

- Small number of study sites and short study period
- Focus on fluvial entrainment instead of all erosional processes
- Potential inaccuracies

Conclusion

- Similar bank soil properties, vegetation, and amounts of erosion were observed between the Lamprey and Sugar Rivers
- Paired vegetation patches had mostly similar soil types and similar local hydraulics
- Knotweed patches experienced more erosion than native patches
- River management should consider removing knotweed, planting more native species, or removing infrastructure from high-risk locations before the need for expensive revetment or any major ecological impacts

References

Chassiot, L., Lajeunesse, P., Bernier, J. (2020). Riverbank erosion in cold environments: Review and outlook. Earth-Science Reviews. 207. 103231. 10.1016/j.earscirev.2020.103231.

Colleran, B., Lacy, S. N., Retamal, M. R. (2020). Invasive Japanese knotweed (Reynoutria japonica Houtt.) And related knotweeds as catalysts for streambank erosion. River Research and Applications, 36(9), 1962-1969.

Jugie, M., Gob, F., Virmoux, C., Brunstein, D., Tamisier, V., Lecoeur, C., Grancher, D. (2018). Characterizing and Quantifying the Discontinuous Bank Erosion of a Small Low Energy River Using Structure-from-Motion Photogrammetry and Erosion Pins. Journal of Hydrology. 563. 10.1016/j.jhydrol.2018.06.019.

Julian, J.P., Torres, R. (2006). Hydraulic erosion of cohesive riverbanks. Geomorphology, 76, 193-206.